Penyesuaian Speleng Gear terhadap Konsistensi Berat dan Nomor Benang (Ne) pada Mesin Ring Spinning untuk Produksi Ne CMC 24k
Isi Artikel Utama
Abstrak
Penelitian ini menganalisis pengaruh penyesuaian speleng gear pada mesin Ring Spinning terhadap konsistensi berat dan nomor benang (Ne) pada produksi benang Ne CMC 24k. Ketidaksesuaian dalam nomor benang dapat berdampak signifikan pada kualitas produk tekstil, yang mendorong perlunya kontrol kualitas yang ketat dalam proses pemintalan. Metode penelitian melibatkan pengambilan sampel benang dari spindel 753 hingga 757, yang diuji sebelum dan sesudah penyesuaian speleng gear untuk menilai efektivitas perbaikan. Prosedur penelitian mencakup pengukuran berat dan nomor benang pada kedua kondisi tersebut serta pengamatan perbedaan antara sisi kanan (R) dan kiri (L) pada setiap spindel. Hasil menunjukkan peningkatan stabilitas Ne, namun masih terdapat variasi antara sisi kanan (R) dan kiri (L) pada beberapa spindel yang tidak sepenuhnya memenuhi standar yang ditetapkan. Temuan ini menggarisbawahi perlunya pemantauan kualitas secara real-time dan penyesuaian parameter produksi untuk mencapai konsistensi benang yang lebih baik. Rekomendasi mencakup penerapan teknologi pengawasan berbasis komputer untuk meningkatkan efisiensi dan kualitas produk secara keseluruhan.
Rincian Artikel
Artikel ini berlisensiCreative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c)
Referensi
Abdkader, A. (2023). A Critical Review On Recent Developments And Solutions In The High-Speed Ring Spinning Process. Textile Research Journal, 93(23-24), 5485-5504. Https://Doi.Org/10.1177/00405175231194793
ASTM International. (2020). Standard Test Methods For Yarn Count. ASTM D1907-20.
Farooq, A. (2023). Artificial Neural Networks To Enhance The Ring Machine Efficiency And Yarn Quality By Determination And Optimization Of Dynamic Yarn Tension. Tekstil Ve Mühendis, 30(132), 265-271. Https://Doi.Org/10.7216/Teksmuh.1278109
Farooq, A. (2023). Artificial Neural Networks To Enhance The Ring Machine Efficiency And Yarn Quality By Determination And Optimization Of Dynamic Yarn Tension. Tekstil Ve Mühendis, 30(132), 265-271. Https://Doi.Org/10.7216/Teksmuh.1278109
Golla, A., Häntzsche, E., Hoffmann, G., Sennewald, C., & Cherif, C. (2023). Geometrical Modeling Of Yarn Motion And Analysis Of Yarn Tension During Stitch Formation Process In Warp Knitting Machines. Textile Research Journal, 93(15-16), 3753-3764. Https://Doi.Org/10.1177/00405175231166150
Günaydin, G. (2022). Effect Of Selected Production Parameters On Yarn Evenness, Imperfections And Tensile Properties Of Core Spun Vortex Yarns. International Journal Of Clothing Science And Technology, 34(6), 829-851. Https://Doi.Org/10.1108/Ijcst-08-2021-0116
Hu, S. (2023). A Method For Yarn Quality Fluctuation Prediction Based On Multi-Correlation Parameter Feature Subspace Mechanism In Spinning Process. Journal Of Engineered Fibers And Fabrics, 18. Https://Doi.Org/10.1177/15589250231208703
International Organization For Standardization (Iso). (2018). Textiles – Determination Of Yarn Count – Part 1: Direct And Indirect Methods. Iso 2060:2018.
Khan, K., Begum, H., & Sheikh, M. (2020). An Overview On The Spinning Triangle Based Modifications Of Ring Frame To Reduce The Staple Yarn Hairiness. Journal Of Textile Science And Technology, 06(01), 19-39. Https://Doi.Org/10.4236/Jtst.2020.61003
Li, H. (2024). Computational Modeling Of The Strength Of Staple Yarn Based On The Random Arrangement Of Fibers. Textile Research Journal, 94(11-12), 1297-1305. Https://Doi.Org/10.1177/00405175241227932
Li, P., Guo, M., Sun, F., & Gao, W. (2020). An Adhesive-Aided Ring Spinning For Improving Cotton Yarn Quality With The Aid Of Sodium Carboxymethyl Cellulose Solution. Journal Of Engineered Fibers And Fabrics, 15. Https://Doi.Org/10.1177/1558925020927837
Mccullough, J. (2019). Textile Science: An Introduction. New York: Textile Publishing.
Oner, E. And Kole, D. (2019). The Impact Of Machine And Construction Settings On Sliver And Yarn Quality In Ring Spinning Process. Nevşehir Bilim Ve Teknoloji Dergisi, 8, 111-117. Https://Doi.Org/10.17100/Nevbiltek.561051
Pereira, F., Macêdo, A., Pinto, L., Soares, F., Vasconcelos, R., Machado, J., … & Carvalho, V. (2023). Intelligent Computer Vision System For Analysis And Characterization Of Yarn Quality. Electronics, 12(1), 236. Https://Doi.Org/10.3390/Electronics12010236
Qiu, J., Zhi-Li, Z., Guo, H., & Wang, X. (2011). Investigation Of Movable Balloon Controller System On A Ring Spinning Frame. Advanced Materials Research, 175-176, 474-479. Https://Doi.Org/10.4028/Www.Scientific.Net/Amr.175-176.474
Saravanan, A. And Sundaramoorthy, S. (2018). Study On The Change In Characteristics Of Ring Yarn During Post Spinning And Yarn Dyeing Operations. Fibres And Textiles In Eastern Europe, 26(3(129)), 35-39. Https://Doi.Org/10.5604/01.3001.0011.7300
Shao, R., Cheng, L., Xue, W., Yu, Y., & Zhang, R. (2019). Theoretical Study Of The Effects On Yarn Strength In A Modified Ring Spinning System. Textile Research Journal, 89(23-24), 5014-5023. Https://Doi.Org/10.1177/0040517519846071
Smith, R. (2021). The Fundamentals Of Yarn Production. Journal Of Textile Engineering, 45(2), 123-135.
Su, X., Liu, X., & Li, S. (2019). Research On Mutual Relationships Of Flange Ring And Traveler On Ring Spinning System. International Journal Of Clothing Science And Technology, 31(1), 32-57. Https://Doi.Org/10.1108/Ijcst-04-2018-0050
Zeeshan, M., Abro, Z., Rehan, A., Shah, A., Khoso, N., & Tariq, S. (2021). Regressional Optimizations Of Cotton Spun Yarn By Controlling Its Process Parameters.. Https://Doi.Org/10.21203/Rs.3.Rs-1078837/V1
Zhang, H., Xia, H., Lu, Y., Wu, J., Zhang, X., & Wei, Y. (2022). Tension Control Of A Yarn Winding System Based On The Nonlinear Active Disturbance-Rejection Control Algorithm. Textile Research Journal, 92(23-24), 5049-5065. Https://Doi.Org/10.1177/00405175221114658
Zhang, L., & Wang, Y. (2022). Advances In Yarn Technology: A Review. Textile Research Journal, 92(3), 456-470.