Analisis Tingginya Total Imperfection Index (IPI) Benang CD41 di Area Drafting Zone Mesin Ring Spinning
Main Article Content
Abstract
Mesin ring spinning adalah salah satu mesin dalam industri pemintalan yang banyak dimanfaatkan karena karena berbagai kelebihannya, termasuk kualitas benang, kerataan, sedikit bulu, dan kemudahan penanganan. Namun,bagian drafting zone dalam mesin ini sering mengalami kerusakan komponen mekanis yang memiliki dampak besar pada kualitas benang pada total indeks ketidaksempurnaan benang. Penelitian ini bertujuan untuk menganalisi faktor yang menjadi penyebab besarnya total ketidak sempurnaan benang CD41 (Carded 41), dan berfokus pada studi kasus percobaan produksi dengan menggunakan komponen mekanis top apron dan top roll, yang sering ditemukan mengalami kerusakan. Kedua komponen mekanis ini sangat penting bagi peregangan serat pada saat pemintalan. Penelitian ini melakukan percobaan produksi benang CD41 dengan kedua komponen tersebut dengan dua macam kualitas komponen yaitu komponen baik dan buruk serta menguji hasil kualitas benang yang dihasilkan. Hasilnya menunjukan bahwa penggunaan top apron dan top roll dengan kondisi mekanis yang baik dapat memenuhi parameter kualitas benang CD41 sesuai dengan stadar perusahaan, yaitu pada parameter indeks ketidaksempurnaan benang, serta ketidakrataan benang, dan kekasaran benang. Sebaliknya komponen yang buruk tidak dapat mencapai kualitas benang sesuai standar. Penelitian ini menggaris bawahi pentingnya penggunaan komponen mekanis yang baik pada drafting zone terhadap kualitas benang.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Copyright (c)
References
Abd-Elhamied, M. R., Hashima, W. A., ElKateb, S., Elhawary, I., & El-Geiheini, A. (2022). Prediction of Cotton Yarn’s Characteristics by Image Processing and ANN. Alexandria Engineering Journal, 61(4), 3335–3340. https://doi.org/10.1016/j.aej.2021.08.057
Al Ktash, M., Knoblich, M., Wackenhut, F., & Brecht, M. (2025). UV Hyperspectral Imaging and Chemometrics for Honeydew Detection: Enhancing Cotton Fiber Quality. Chemosensors, 13(1), 21. https://doi.org/10.3390/chemosensors13010021
Almeida, T., Moutinho, F., & Matos-Carvalho, J. P. (2021). Fabric Defect Detection With Deep Learning and False Negative Reduction. IEEE Access, 9, 81936–81945. https://doi.org/10.1109/ACCESS.2021.3086028
Amiri Savadroodbari, H., Razbin ,Milad, Reza Hasani ,Mohsen, & and Safar Johari, M. (2025). Tuning drafting zone parameters for polyester yarn within a ring spinning system: Modeling and optimization. The Journal of The Textile Institute, 116(6), 1147–1160. https://doi.org/10.1080/00405000.2024.2368287
Apazhev, A. K., Shekikhachev, Y. A., Hazhmetov, L. M., & Shekikhacheva, L. Z. (2021). Forecasting and operational assessment of the quality of repaired units. IOP Conference Series: Materials Science and Engineering, 1155(1), 012023. https://doi.org/10.1088/1757-899X/1155/1/012023
Arafat, Y., & Uddin, A. J. (2022). Recycled fibers from pre- and post-consumer textile waste as blend constituents in manufacturing 100% cotton yarns in ring spinning: A sustainable and eco-friendly approach. Heliyon, 8(11), e11275. https://doi.org/10.1016/j.heliyon.2022.e11275
Balai Besar Tekstil Kementerian Perindustrian. (2022, July 29). Kemenperin: 100 Tahun Industri Tekstil, Momentum Tingkatkan Kinerja Industri TPT. https://bbt.kemenperin.go.id/blog/konten-26
Baluprithviraj, K. N., Monesh, M. S., PraneshRaj, C., & Varuna, S. (2022). Enhancement of Yarn Quality by Controlling the Humidity and Temperature. 2022 International Conference on Automation, Computing and Renewable Systems (ICACRS), 1363–1369. https://doi.org/10.1109/ICACRS55517.2022.10029286
Belzagui, F., & Gutiérrez-Bouzán, C. (2022). Review on alternatives for the reduction of textile microfibers emission to water. Journal of Environmental Management, 317, 115347. https://doi.org/10.1016/j.jenvman.2022.115347
Bintang, H. S., Pujianto, H., Darmawi, A., Harianto, D., & Ibriza, A. C. (2024). Perbaikan Kualitas Neps Sliver Rayon pada Proses Carding Dengan Metode Dmaic. PROSIDING SNAST, C8-14. https://doi.org/10.34151/prosidingsnast.v1i1.4991
Camargo, V. C. B., Toledo, F. M. B., & Almada-Lobo, B. (2014). HOPS – Hamming-Oriented Partition Search for production planning in the spinning industry. European Journal of Operational Research, 234(1), 266–277. https://doi.org/10.1016/j.ejor.2013.10.017
Cao, J., Liu, X., Mo, R., Liu, H., & Xu, H. (2024). Structure Damage on Cotton Fiber via Coupling Effect of Moisture Regains and Low Temperature. Journal of Natural Fibers, 21(1), 2338926. https://doi.org/10.1080/15440478.2024.2338926
Cheng, G., & Li, L. (2020). Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems. Reliability Engineering & System Safety, 204, 107146. https://doi.org/10.1016/j.ress.2020.107146
Cintrón, M. S., & Ingber, B. F. (2013). Preliminary examination of the effects of relative humidity on the fracture morphology of cotton flat bundles. Textile Research Journal, 83(10), 1044–1054. https://doi.org/10.1177/0040517512470194
Dai, N., Jin, H., Xu, K., Hu, X., Yuan, Y., & Shi, W. (2023). Prediction of Cotton Yarn Quality Based on Attention-GRU. Applied Sciences, 13(18), 10003. https://doi.org/10.3390/app131810003
Das, A., Yadav, P., & Ishtiaque, S. (2002). Apron slippage in ring frame: Part I - Establishing the phenomenon and its impact on yarn quality. Indian Journal of Fibre and Textile Research, 27, 38–43.
Diyaley, S., & Chakraborty, S. (2021). Teaching-learning-based optimization of ring and rotor spinning processes. Soft Computing, 25(15), 10287–10307. https://doi.org/10.1007/s00500-021-05990-0
El-Habiby, F. (2021). Effect of F ect of Front Top Roll E op Roll Eccentricity in Ring Spinning on Y ccentricity in Ring Spinning on Yarn Regularity and Imperfections. 26(3). https://doi.org/10.21608/bfemu.2021.145994
Hamzi, A., Habib, A., Babaarslan, O., Abushaega, M. M., Masum, M., & Al Mamun, Md. A. (2025). Production of Sustainable Yarn Incorporating Process Waste to Promote Sustainability. Processes, 13(3), 764. https://doi.org/10.3390/pr13030764
Harianto, D., Pujianto, H., Bintang, H. S., & Alfanti, D. (2025). Analisa Perbaikan Benang Kusut Akibat Ring Touch pada Proses Penggulungan di Mesin Ring Spinning Frame. JISI: Jurnal Integrasi Sistem Industri, 12(1), 67–78. https://doi.org/10.24853/jisi.12.1.67-78
Hequet, E., & Abidi, N. (2005). Effects of the Origin of the Honeydew Contamination on Cotton Spinning Performances. Textile Research Journal, 75(10), 699–709. https://doi.org/10.1177/0040517505053909
Ibrahim, I. (2018). Effect of Fiber Length and Short Fiber Percent in Cotton on Fiber and Yarn Quality. Alexandria Science Exchange Journal, 39(OCTOBER-DECEMBER), 663–668. https://doi.org/10.21608/asejaiqjsae.2018.20692
Irfan, M., Qadir, M. B., Afzal, A., Shaker, K., Salman, S. M., Majeed, N., Indrie, L., & Albu, A. (2023). Investigating the effect of different filaments and yarn structures on mechanical and physical properties of dual-core elastane composite yarns. Heliyon, 9(9), e20007. https://doi.org/10.1016/j.heliyon.2023.e20007
Islam, Md. R., Karim, F.-E.-, & Khan, A. N. (2024). Statistical analysis of Cotton-Jute blended ratio for producing good quality blended yarn. Heliyon, 10(2), e25027. https://doi.org/10.1016/j.heliyon.2024.e25027
Kumar, J. A. (2020, May 4). Sustainable production strategies for spinning mills. https://www.textiletoday.com.bd/sustainable-production-strategies-spinning-mills
Lin, Y.-H., Chen, J.-M., & Chen, Y.-C. (2011). The impact of inspection errors, imperfect maintenance and minimal repairs on an imperfect production system. Mathematical and Computer Modelling, 53(9–10), 1680–1691. https://doi.org/10.1016/j.mcm.2010.12.040
Ortiqov, Z. U. (2024). Problems of the process of moistening raw cotton and cotton fiber. Cotton fiber wetting process problems. «System Analysis and Applied Information Science», 4, 34–40. https://doi.org/10.21122/2309-4923-2024-4-34-40
Pereira, F., Lopes, H., Pinto, L., Soares, F., Vasconcelos, R., Machado, J., & Carvalho, V. (2025). Yarn quality analysis by using computer vision and deep learning techniques. Textile Research Journal, 00405175251331205. https://doi.org/10.1177/00405175251331205
Pujianto, H. (2020). Implementasi Kaizen Dalam Meningkatkan 5s dan Menjaga Kualitas Hasil Praktik Pada Workshop Pertenunan di Ak-Tekstil Solo. 28(1).
Pujianto, H., Dharma, F. P., Afifudin, M., & Hindardi, D. (2022). Implementasi Kaizen dalam Menurunkan Cacat Benang Belang pada PT. XYZ. Proceeding Mercubuana Confrence on Industrial Engineering 4th MBCIE 2022, 18 Juni 2022: Renewable Energy Toward Sustainability Of Supply Chains In The I4.0 Era, 4, 124–128. https://doi.org/10.22441/MBCIE.2022.014
Pujianto, H., Yulianto, B., Bintang, H. S., & Pramesti, D. A. (2023). Optimum Splice Thickness Ratio Splicer of a Winding Machine to PE20KT Thread Splicing Quality. Sainteks: Jurnal Sains dan Teknik, 5(2), 228–235. https://doi.org/10.37577/sainteks.v5i2.605
Raian, S., Saha, S. K., Hossen, J., Baral, L. M., Begum, H. A., Islam, Md. R., & Hossain, M. M. (2023). Assessing the Impact of Spacer Size Variations on the Ring-Spun Yarn Quality Ranking. Textile & Leather Review, 6, 559–609. https://doi.org/10.31881/TLR.2023.102
Raian, S., Siddiqua, T., Abdul Moktadir, Md., & Rahman, T. (2023). An empirical model for identifying and controlling operational and environmental risks in spinning industry in an emerging economy. Computers & Industrial Engineering, 180, 109244. https://doi.org/10.1016/j.cie.2023.109244
Raiskio, S., Periyasamy, A., Hummel, M., & Heikkilä, P. (2025). Transforming mechanically recycled cotton and linen from post-consumer textiles into quality ring yarns and knitted fabrics. Waste Management Bulletin, 3(1), 76–86. https://doi.org/10.1016/j.wmb.2024.12.006
Saleem, M. A., Baig, M. M. A., Ahmad, M. Q., Zia, Z. U., Asif, M., & Nauman, M. (2023). Micro-Climatic effect on Cotton Yield, quality, Bt toxin & GT Gene. International Journal of Innovative Approaches in Agricultural Research, 7(1), 40–52. https://doi.org/10.29329/ijiaar.2023.536.3
Siddiqui, M. Q., Wang, H., & Memon, H. (2020). Cotton Fiber Testing. In H. Wang & H. Memon (Eds.), Cotton Science and Processing Technology: Gene, Ginning, Garment and Green Recycling (pp. 99–119). Springer Singapore. https://doi.org/10.1007/978-981-15-9169-3_6
Singh, S., & Khajuria, R. (2018). Chapter 11—Penicillium Enzymes for the Textile Industry. In V. K. Gupta & S. Rodriguez-Couto (Eds.), New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 201–215). Elsevier. https://doi.org/10.1016/B978-0-444-63501-3.00011-9
Thilagavathi, G., & Karthik, T. (2016). Process Control and Yarn Quality in Spinning (1st ed.). WPI Publishing.
Umair, M., Shaker ,Khubab, Ahmad ,Naseer, Hussain ,Muzzamal, Jabbar ,Madeha, & and Nawab, Y. (2017). Simultaneous Optimization of Woven Fabric Properties Using Principal Component Analysis. Journal of Natural Fibers, 14(6), 846–857. https://doi.org/10.1080/15440478.2017.1279994
Wijaya, T. B., & Sulistyadi. (2020). Peningkatan Kualitas Imperfection Indicator (IPI) Benang P/C Ne1 45 pada Mesin Ring Spinning Toyoda Model Ry dengan Setting Variasi Diameter Ring Flange dan Nomor Traveller. 6(3), 95–102.
Yeshzhanov, A., Erdem, R., Murzabayeva, G., Tojimirzaev, S., Batyrkulova, A., Kaldybaev, R., & Zhambylbay, A. (2024). Impact of taker-in speed on the characteristics of ring-spun yarn. Industria Textila, 75(06), 768–774. https://doi.org/10.35530/IT.075.06.2023135